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1 Introduction

The earliest treatments of decision under uncertainty construe acts as chance lotteries with

known probability distributions over outcomes (e.g., Pascal, 1852; Bernoulli, 1954; von

Neumann and Morgenstern, 1944). When objective probabilities are not available, decision

makers may assess probabilities subjectively, with some degree of vagueness or doubt. For

roughly the last century decision theorists have debated how to properly characterize decisions

that are made under these conditions. Knight (1921) famously distinguished decision under

risk, in which probabilities can be measured, from decision under uncertainty, in which they

cannot. He argued that entrepreneurs earn superior profits due in part to their willingness to

bear unmeasurable uncertainty. Contemporaneously, Keynes (1921) distinguished probability,

which he characterized as the balance of evidence supporting a focal proposition, from the

total weight of evidence supporting its balance. He argued that one should favor actions with

equal probabilities that are supported by more evidence.

Subjectivists dismissed the relevance of probability vagueness. Notably, Ramsey (1931)

proposed that subjective probability should be measured by preferences between bets so that

vagueness does not influence choice independently of its impact on overall belief strength.

Likewise, although Savage (1954) acknowledged that subjective probabilities may be vague, he

dismissed the relevance of second-order uncertainty in his development of subjective expected

utility theory.

The debate concerning second-order uncertainty gained renewed attention when Ellsberg

(1961) described decision problems in which the common preference to bet on known rather

than unknown probabilities violate the sure-thing principle, a key axiom of Savage’s model.

Ellsberg’s simplest demonstration, the “two-color problem,” involves two urns, each containing

red and black balls. The first urn contains 50 red balls and 50 black balls, while the second

urn contains 100 red and black balls of unknown proportion. Most people report a preference

to bet on a red ball being drawn at random from the 50-50 urn than from the unknown

probability urn, and also prefer a bet on a black ball being drawn at random from the 50-50

urn than from the unknown probability urn. This violates the additivity assumption of

subjective expected utility theory, as subjective probabilities cannot sum to 1 for both urns.

Ellsberg interpreted this pattern as reflecting aversion to ambiguity, which he characterized

as “a quality depending on the amount, type, reliability and ‘unanimity’ of the information,

and giving rise to one’s degree of ‘confidence’ in an estimate of relative likelihoods” (Ellsberg,

1961, p. 657).1

1While Ellsberg’s examples were hypothetical, ambiguity aversion has been empirically validated in numerous
studies using variations of Ellsberg’s paradigm (for excellent reviews see Camerer and Weber, 1992; Machina
and Siniscalchi, 2014; Trautmann and Van De Kuilen, 2015). Moreover, ambiguity aversion has been
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The present paper tests a novel behavioral interpretation of ambiguity aversion. We

provide evidence from six experimental studies that ambiguity aversion is driven by distaste

for betting when one feels relatively ignorant or uninformed — but only to the extent that the

relevant uncertainty is seen as inherently knowable or epistemic in nature. Thus, the addition

of randomness or aleatory uncertainty provides a hedge against betting on one’s relative

ignorance and can make a prospect more attractive. Note that in the present account the

distinction between epistemic and aleatory uncertainty is subjective and can be influenced by

how options are described, as we will show in our final two studies. Our set of results cannot

be accommodated by prominent models of decision under uncertainty, and contradict the

common notion that ambiguity aversion is a manifestation of aversion to compound lotteries.

However, generic source models provide sufficient flexibility to accommodate our findings of

aversion to epistemic uncertainty.

1.1 Ambiguity and Compound Lottery Aversion

Early models in the economics literature captured ambiguity aversion by allowing decision

makers to express pessimism to subjective probabilities, either by applying the worst from

a range of possible subjective priors (Maxmin Expected Utility; Gilboa and Schmeidler,

1989), or by underweighting subjective probabilities (Choquet Expected Utility; Gilboa, 1987;

Schmeidler, 1989). Alternative explanations construe bets on Ellsberg’s ambiguous urn as a

two-stage, compound lottery (Segal, 1987). The first stage can be thought of as a lottery

over possible compositions of the unknown urn, for which the decision maker has a set of

possible priors, while the second stage reflects a random draw of a ball from the urn that

obtains in the first stage. According to this view, a systematic preference to bet on the

known urn over the unknown urn represents a failure to reduce the two-stage lottery to its

50-50 equivalent, and ambiguity aversion can be viewed as aversion to compound lotteries.

In particular, Halevy (2007) provided evidence that ambiguity neutrality in the two-color

Ellsberg problem is strongly correlated with a tendency to price a simple 50-50 lottery equal

to compound lotteries with objective probabilities that reduce to 50-50. He concludes that

“. . . failure to reduce compound (objective) lotteries is the underlying factor of the Ellsberg

paradox” (for similar results see also Abdellaoui et al., 2015; Dean and Ortoleva, 2019, but

see Bernasconi and Loomes, 1992).

Four main interpretations have been proposed for why the simple risky lottery is preferred

leveraged to explain a wide range of phenomena such as portfolio choices and asset prices (Dow and
da Costa Werlang, 1992; Gollier, 2011), insurance transactions (Hogarth and Kunreuther, 1985; Alary et al.,
2013), incomplete contracts (Mukerji, 1998), financial markets (Mukerji and Tallon, 2001), brand choice
(Muthukrishnan et al., 2009), vaccination decisions (Ritov and Baron, 1990), and strategic choice in games
(Pulford and Colman, 2007; Vives and Feldman Hall, 2018).
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to the compound, ambiguous lottery. First, individuals may fail to reduce compound lotteries

even when all stages entail objective probabilities (Halevy, 2007). Second, individuals may

accept second-stage (objective) lotteries as given, but be pessimistic with respect to their

first-stage subjective probabilities, and underweight such first-stage beliefs in the valuation

process (Recursive Rank-Dependent Utility; Segal, 1987, 1990). Third, individuals may be

more risk averse for first-stage (subjective) lotteries than second-stage (objective) lotteries

(Recursive Expected Utility; Klibanoff et al., 2005). Fourth, subjective probabilities may be

more strongly underweighted than corresponding objective probabilities (source models with

second-order probabilistic sophistication; Ergin and Gul, 2009).

1.2 Ambiguity and Epistemic Uncertainty Aversion

A separate stream of research in psychology breaks with the tradition of modeling ambiguity

in terms of second-order probability distributions, multiple priors, or compound lotteries,

and instead construes ambiguity aversion as distaste for acting in situations where a decision

maker feels relatively ignorant, unskilled, or uninformed (Frisch and Baron, 1988; Heath

and Tversky, 1991; Fox and Tversky, 1995; Fox and Weber, 2002; Hadar et al., 2013). In

support of this hypothesis, Heath and Tversky (1991) demonstrated that although decision

makers prefer betting on chance events to uncertain events of matched probability in domains

where they lack expertise, they often prefer betting on uncertain events to chance events in

domains where they feel particularly knowledgeable or competent. For example, in one study

students who rated themselves as knowledgeable about football and ignorant about politics

preferred to bet on their predicted winner of a football game that they judged to have, say, a

70% chance of winning rather than a chance gamble involving the draw of a winning poker

chip from an urn containing 70 out of 100 winning chips. These same subjects, however,

preferred betting on chance to their prediction of which presidential candidate would win

various states in the 1988 election, consistent with ambiguity aversion. Meanwhile, students

who rated themselves as knowledgeable about politics and ignorant about football exhibited

the opposite pattern, preferring to bet on politics to chance and chance to football.

To motivate the link between subjective knowledge and ambiguity aversion, Heath and

Tversky (1991) asserted that consequences of bets include not only their monetary outcomes

but also the “psychic payoffs of satisfaction or embarrassment [that] can result from self-

evaluation or evaluation by others” where “the credit and the blame associated with an

outcome depend . . . on the attributions for success or failure” (p. 7). Losing a bet because of

one’s ignorance is more embarrassing than losing because of chance; winning a bet because

of one’s knowledge is more gratifying than winning because of chance. Indeed, laboratory
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experiments support the notion that evaluation from (real or imagined) others contributes to

the ambiguity aversion phenomenon. Curley et al. (1986) found that ambiguity aversion is

exacerbated in the presence of observers. Trautmann et al. (2008) replicated this effect and

found that ambiguity aversion diminishes or disappears in situations where observers do not

know the decision maker’s preferences over outcomes and therefore cannot assign credit or

blame for choices. They showed further that ambiguity aversion is more pronounced among

individuals who score higher on a scale that measures fear of negative evaluation by others.

It stands to reason that decision makers may feel especially blameworthy for betting

on their ignorance when they are reminded that they are more knowledgable about other

bets or that other individuals are better informed. Indeed, ambiguity aversion appears to

be driven by such contrasting states of knowledge (Fox and Tversky, 1995; Fox and Weber,

2002; Hadar et al., 2013). For instance, Fox and Tversky (1995) reported that ambiguity

aversion is pronounced in comparative contexts where decision makers evaluate both risky

and ambiguous bets simultaneously, but diminishes or disappears when separate groups of

decision makers evaluate these bets in isolation so that there is no explicit contrast between

urns to highlight a decision maker’s comparative ignorance. Moreover, Chow and Sarin (2002)

reported that people find betting on their own comparative ignorance less aversive when

relevant information is available to no one. For instance, people are willing to pay more to

bet on which of two apples has a greater number of seeds before the apples have been sliced

open than after they have been sliced open and the seeds have been counted by someone else.

Taken together, this literature suggests that ambiguity aversion reflects reluctance to bet in

situations where the decision maker is relatively ignorant or uninformed concerning target

outcomes, but only to the extent that outcomes are seen as inherently predictable or knowable

at the time the decision is made.

The foregoing distinction between predictable and unpredictable outcomes recalls a

longstanding philosophical distinction between epistemic and aleatory uncertainty (Hacking,

2006). Aleatory uncertainty is attributed to randomness or stochastic processes; decision

under risk therefore involves pure aleatory uncertainty. Epistemic uncertainty, by contrast, is

attributed to deficiencies in one’s knowledge, expertise, or information; Knightian uncertainty

is therefore at least partly epistemic. Laboratory studies have found that people intuitively

differentiate between these two dimensions of uncertainty, and that this distinction has

meaningful consequences for various domains of judgment and choice (Fox and Ülkümen,

2011; Ülkümen et al., 2016; Tannenbaum et al., 2017; Walters et al., 2020; Fox et al., 2020;

Krijnen et al., 2021). Experiments have shown that outcomes of predictions made under

greater epistemic uncertainty (e.g., whether or not one has correctly answered a trivia

question) are associated with stronger attributions of credit for predicting correctly and
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blame for predicting incorrectly, whereas outcomes of predictions made under greater aleatory

uncertainty (e.g., whether or not one has correctly predicted the outcome of a fair coin toss)

are associated with stronger attributions of good or bad luck (Fox et al., 2020). This result

suggests that ambiguity aversion will be stronger in situations where uncertainty is seen as

more epistemic in nature, especially when decision makers consider themselves to be relatively

ignorant, incompetent, or uninformed (and therefore more exposed to blame for making

choices that result in inferior outcomes). Ambiguity aversion should be less pronounced in

situations where outcomes are determined at least partly by chance (where luck plays a role

in outcomes) or when decision makers consider themselves to be relatively knowledgeable,

competent, or well-informed (so that there is the potential to claim some credit for making

choices that result in superior outcomes).

All of these qualitative observations can be accommodated by the flexibility of generic

source models such as prospect theory (Tversky and Kahneman, 1992) that weight events

differently for different sources of uncertainty (Tversky and Fox, 1995; Abdellaoui et al.,

2011).2 In particular, events that the decision maker views as more epistemic and feels

relatively ignorant about are assigned lower decision weights than corresponding events that

the decision maker views as more aleatory or feels relatively competent about.

1.3 The Extended Ellsberg Paradigm as a Critical Test

Consider again the Ellsberg (1961) two-color problem. Betting on a color drawn from the

known probability urn is a decision under purely aleatory uncertainty, and in this case

selecting the “incorrect” color can be attributed entirely to bad luck. In contrast, betting

on a color drawn from the unknown probability urn represents a decision under uncertainty

that is partly epistemic (because the composition of the urn is, in principle, knowable). Since

the decision maker is more ignorant about the composition of the unknown than known

probability urn, betting on the incorrect color exposes the decision maker to potential blame

or self-recrimination whereas betting on the correct color confers little potential credit or

self-congratulation.

The foregoing analysis suggests that a variation of Ellsberg’s paradigm could yield a bet

that is even less attractive than a single draw from the unknown probability urn. Betting on

whether the contents of the unknown probability urn are mostly red or black is a bet under

purely epistemic uncertainty and should therefore be less attractive for ambiguity averse

decision makers than a bet on a single draw from the unknown probability urn. Importantly,

a single draw from the unknown probability urn includes an aleatory hedge: even if the

2We refer to these models as generic source models to distinguish them from source models with second-order
probabilistic sophistication (Ergin and Gul, 2009).
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Figure 1: Extended Ellsberg two-color problem. This Figure displays a simplified extension of the
Ellsberg two-color problem construed as one- and two-stage lotteries. The paradigm includes a bet that offers
$100 if a red ball is drawn from an urn containing exactly one red ball and one black ball (Panel A), $100 if a
red ball is drawn from an urn containing three balls each of which may be red or black (Panel B), and $100 if
the majority of balls are red in an urn containing three balls each of which may be red or black (Panel C).
The bet in Panel A can be construed as a single-stage lottery with a 50% chance of paying $100 (and nothing
otherwise); the bet in Panel B can be construed as a two-stage lottery with an unknown probability of various
possible compositions of the urn followed by a draw from the urn that obtains in the first-stage, yielding a
probability of anywhere from zero to one of paying $100 (and nothing otherwise); the bet in Panel C can be
construed as a single-stage lottery in which there is an unknown probability anywhere from zero to one that
the urn will contain a majority of red balls and therefore pay $100 (and nothing otherwise).

decision maker chooses to bet on what turns out to be the minority color, she can still get

lucky and win the prize, provided there is at least one ball of that color in the urn.

The extended Ellsberg paradigm outlined above can provide a critical test of conventional

economic models of decision under uncertainty against the present account that ambiguity

aversion is driven by a distaste for betting on epistemic (but not aleatory) uncertainty. To see

how, consider a simplified extension of Ellsberg’s two-color problem, illustrated in Figure 1,

for a decision maker who bets on red. The first two panels display the conventional two-color

problem for a bet on drawing a red ball from an urn containing one red and one black ball

(Panel A) and an urn containing three balls each of which is either red or black but whose

composition is unknown (Panel B). The third panel displays a bet that the majority color

in the unknown composition urn is red (Panel C). Note that an even number of balls are

required for the first bet in order to have a 50-50 composition, and an odd number of balls

are required for the other two bets in order to guarantee a majority color.

As we show in Section 2, if we assume symmetric priors over ball color3, Subjective

3Assuming symmetric priors over ball colors is common in Ellsberg-related studies on ambiguity aversion
(e.g., Halevy, 2007; Chew et al., 2017) and consistent with empirical evidence (Abdellaoui et al., 2011). We
rely on this assumption only for the first two out of six studies in this paper. Note that an SEU decision
maker with asymmetric priors over ball colors and a choice of which color to bet on will always prefer Bet B
and Bet C to Bet A and thus be ambiguity seeking. In this case, the relative attractiveness of Bet B and
Bet C is determined by the probabilities assigned to the “RRB” and “RBB” states of the world. When the
decision maker assigns equal probabilities to both states, she will be indifferent between Bet B and Bet C.
When the “RRB” state is believed to be more likely than the “RBB” state, the decision maker will prefer
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Expected Utility (SEU; Savage, 1954) predicts that decision makers will be indifferent

between these three bets. Moreover, most of the prominent economic models designed to

accommodate ambiguity aversion cannot also accommodate the simultaneous preference of

Bet A to Bet B (the conventional Ellsberg pattern) and the preference of Bet B to Bet C

(preferring to bet on a single draw from an unknown probability urn to betting on the contents

of an unknown probability urn).

In sum, we propose that ambiguity aversion is driven by distaste for betting on one’s

relative ignorance under conditions of epistemic uncertainty. There are three main implications

of the epistemic uncertainty aversion hypothesis : (1) under conditions of ignorance, ambiguity

averse decision makers prefer betting on a greater balance of aleatory to epistemic uncertainty

(holding judged probability constant); (2) this preference for an aleatory hedge diminishes

with increasing subjective knowledge; and (3) viewing an uncertain prospect as epistemic

or aleatory is subjective and can be influenced by the framing of decision options. In this

paper we present six experimental studies that collectively test these three implications of

the epistemic uncertainty aversion hypothesis, and contrast this account with prior accounts

of decision under ambiguity.

2 Experimental Paradigm and Theoretical Predictions

2.1 Ellsberg Paradigm

The starting point for our experimental studies is Ellsberg’s (1961) two-color problem as

described above. We add a third lottery to the choice set for which, like the second lottery, the

composition of the urn is unknown to the decision maker and therefore ambiguous. However,

instead of betting on a single random draw from the urn, the decision maker bets on whether

the majority of the urn’s balls match the predicted winning color. Subjects are therefore

confronted with pairwise choices between the following three options: predicting a random

draw from a 50-50 urn, predicting a random draw from an unknown probability urn, and

predicting the majority color of an unknown probability urn. The unknown probability urns

contain an odd number of balls to guarantee a majority color.

We label these three lotteries according to their corresponding nature of uncertainty. A

decision maker who chooses to draw from the 50-50 urn faces only aleatory uncertainty as the

composition of the urn is known and the outcome is completely random; we therefore refer to

this single-stage, risky lottery as the A-lottery (LA) in the analysis that follows. The classic

Ellsberg ambiguous lottery exposes the decision maker to both epistemic uncertainty (arising

Bet C to Bet B (and vice versa).
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from the unknown urn composition) and aleatory uncertainty (due to the random draw

from the urn given its composition); we therefore refer to this compound, mixed-uncertainty

lottery as the EA-lottery (LEA). The lottery involving the third urn asks subjects to bet

on its majority color, and because no random draw is made the bet entails only epistemic

uncertainty; we therefore refer to it as the E-lottery (LE). This final, single-stage lottery

is crucial to our analysis as it allows us to unconfound number of stages (single-stage vs.

compound) from source of uncertainty (epistemic vs. aleatory). Thus, we can test whether

ambiguity aversion is more closely associated with aversion to epistemic uncertainty or

aversion to compound lotteries.

2.2 Theoretical Predictions

We next turn to an analysis of predictions made by various theoretic models concerning

preferences across our three lotteries. The three-urn setup underlying our general paradigm

can be characterized as follows: Each lottery Li, where i ∈ {A,EA,E}, pays x if the decision

maker correctly guesses the color — red (R) or black (B) — of the drawn ball (for the

A-lottery or the EA-lottery) or correctly predicts the color of the majority of balls in the urn

(for the E-lottery), and otherwise pays zero. To facilitate the derivation of predictions of

different utility models, we assume that the decision maker is indifferent between betting on

red or black, i.e., she acts as if both colors are equally likely. This symmetry assumption

has been empirically validated (Abdellaoui et al., 2011) and is common in Ellsberg-related

studies on ambiguity aversion (e.g., Chew et al., 2017). Due to symmetry, the utilities from

betting on either color are the same. We therefore only use the utility of correctly betting on

a particular color for a given urn in the following derivations. Readers wishing to forgo a

technical treatment of prominent models can skip to Section 2.2.7.

2.2.1 Subjective Expected Utility

In SEU (Savage, 1954), the decision maker assigns a subjective probability p to each state of

the world associated with outcomes of a lottery. When objective probabilities are provided

(as for the A-lottery), it is assumed that subjective and objective probabilities coincide.

In addition, SEU requires that decision makers adhere to probabilistic sophistication and

correctly reduce compound lotteries, making the reduction of compound lottery axiom (RCLA)

an integral element of SEU (e.g., Anscombe and Aumann, 1963; Segal, 1990).

The symmetry assumption, in combination with RCLA, implies that subjective probabili-

ties for both events R and B are 0.5 for the two urns involving ambiguity (EA-lottery and

E-lottery). This also holds for the A-lottery as the objective probability is 0.5 for drawing
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either color. Given a utility function u, a decision maker’s subjective expected utility of

lottery Li is given by:

USEU(Li) = 0.5u(x),

where we normalize u(0) = 0. SEU thus models all three lotteries as having the same utility,

so that an SEU decision maker is indifferent between them:

SEU ⇒ LA ∼ LEA ∼ LE.

Hence, SEU is unable to accommodate observations of ambiguity aversion (LA � LEA

and LA � LE). Moreover, SEU cannot accommodate a strict preference between the

purely epistemic and mixed uncertainty lotteries, as predicted by compound lottery aversion

(LE � LEA) or epistemic uncertainty aversion (LEA � LE).

2.2.2 Choquet Expected Utility

Choquet Expected Utility (CEU) is able to accommodate ambiguity aversion as it allows the

decision maker to express pessimism with respect to the subjective probabilities inherent in

ambiguous lotteries (Gilboa, 1987; Schmeidler, 1989).4

In CEU, a capacity function w is employed. The capacity function is a non-additive

function that maps events onto the unit interval and is monotonic in terms of inclusion (Gilboa,

1987; Schmeidler, 1989). For a probabilistically sophisticated decision maker (Machina and

Schmeidler, 1992), the capacity function can therefore be thought of as a probability weighting

function that transforms subjective probabilities (Tversky and Fox, 1995; Fox and Tversky,

1998; Wakker, 2004). We follow the CEU axiomatization in Schmeidler (1989) and assume

that expected utility is applied to risk and that capacities are either strictly convex or strictly

concave. The shape of the capacity function determines whether a decision maker exhibits

global ambiguity aversion (convex w) or ambiguity seeking (concave w). CEU with a linear

capacity function (the identity function) coincides with SEU. Assuming symmetry, the utility

of an ambigous lottery (LEA, LE) under CEU is given by:

UCEU(Li) = w(0.5)u(x).

For objective lotteries (LA), CEU coincides with SEU. Under the assumption of a strictly

4An alternative approach to modelling pessimism regarding ambiguous prospects is employed in Maxmin
Expected Utility (MEU; Gilboa and Schmeidler 1989). In MEU, the decision maker applies the worst
possible prior from a convex set of priors in his evaluation of ambiguous lotteries. Because in our setup
MEU can be accommodated by CEU when the capacity function is convex (which is needed to capture
ambiguity aversion), we only discuss the latter model.

10



convex capacity (w(0.5) < 0.5), CEU predicts that the A-lottery is preferred to the E-lottery.5

With respect to the EA-lottery, a CEU prediction can only be derived when it adopts the

Anscombe-Aumann framework (Schmeidler, 1989) and incorporates RCLA. In that case the

EA-lottery is treated the same as the E-lottery, and the two yield the same Choquet expected

utility. If CEU is axiomatized in a Savagean domain (Gilboa, 1987; Wakker, 1987), then it is

unclear how compound lotteries are evaluated (Chew et al., 2017). The following preference

pattern therefore emerges for CEU incorporating convex capacities and RCLA:

CEU ⇒ LA � LEA ∼ LE.

Thus, CEU is able to accommodate ambiguity averse behavior (LA � LEA and LA � LE),

but cannot accommodate a strict preference between the purely epistemic and mixed un-

certainty lotteries, as predicted by compound lottery aversion (LE � LEA) or epistemic

uncertainty aversion (LEA � LE).

2.2.3 Recursive Rank-Dependent Utility

The foregoing discussion suggests that a strict preference for the EA-lottery over the E-lottery

(or vice versa) cannot be captured when RCLA applies. Recursive rank-dependent utility

(RRDU) is a valuation approach that relaxes RCLA (Segal, 1987, 1990). It builds on rank-

dependent utility (Quiggin, 1982) but allows for an explicit valuation of the first and second

stages within compound lotteries. Relaxing RCLA also receives empirical support, as studies

find that reduction of compound risk typically fails (e.g., Abdellaoui et al., 2015).

The general mechanism of RRDU is best illustrated by an example on how the (ambiguous)

two-stage, mixed-uncertainty lottery, LEA, is evaluated. Suppose a decision maker constructs

her own second-order (first-stage) subjective belief for an urn that contains three balls in

total, as in Figure 1. She considers all possible urn compositions, including both extreme and

intermediate possibilities: all red balls, two red balls (and one black ball), one red ball (and

two black balls), or no red balls. The subjective probability that the urn contains balls of

only one color is α for each of the two single-color scenarios (with α ≤ 0.5), and the residual

5Since the goal of this paper is to explore ambiguity aversion, assuming a strictly convex capacity in CEU for
deriving our predictions is in order because otherwise traditional applications of CEU with no inflection
point in the capacity function would not be able to accommodate the standard Ellsberg preference pattern
(LA � LEA). Moreover, even when assuming a concave capacity the result that a CEU decision maker
is indifferent between the EA-lottery and the E-lottery would still hold. However, in this case both urns
would be preferred to the A-lottery, implying ambiguity seeking behavior. Finally, even if we assume a
weighting function that is inverse-S shaped as in prospect theory (Tversky and Kahneman, 1992), the
principle of subcertainty (weights of complementary events sum to less than 1) suggests that the assumption
of convex capacities is adequate since both imply that the capacity of a 0.5 probability is less than 0.5; i.e.,
w(0.5) < 0.5.
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probability (1− 2α) is divided equally between the remaining two urn compositions (yielding

0.5− α).

Assume the decision maker bets on red, and in the first step evaluates second-stage

lotteries. Depending on the urn distribution, her payoff profiles of the second-stage lotteries

are as follows: ($x, 1; $0, 0) if all balls are red, ($x, 2
3
; $0, 1

3
) if the urn contains two red balls,

($x, 1
3
; $0, 2

3
) if the urn contains one red ball, and ($x, 0; $0, 1) if no balls are red. The decision

maker’s rank-dependent utility arising from such second-stage lotteries can be calculated as

URDU(x, p; 0, 1− p) = w(p)u(x),

where u is a common utility function (normalized to u(0) = 0) applied to both stages, and

w is a probability weighting function. The weighting function must be strictly convex with

nondecreasing elasticity to accommodate uniform ambiguity aversion (Segal, 1987). Such a

convex weighting function implies that probabilities are always underweighted (i.e., w(p) < p).

In the next step, the decision maker transforms the utilities from second-stage lotteries

into certainty equivalents

CERDU(x, p; 0, 1− p) = u−1(w(p)u(x))

and evaluates the EA-lottery by employing the obtained certainty equivalents as prizes in

the RDU formula. Thus, in this simplified example, the RRDU for betting on the two-stage,

mixed-uncertainty lottery (LEA) with prize x is

URRDU(LEA) = u
(
u−1
(
w(1)u(x)

))
·
(
w(α)− w(0)

)
+

u
(
u−1
(
w(

2

3
)u(x)

))
·
(
w(0.5)− w(α)

)
+

u
(
u−1
(
w(

1

3
)u(x)

))
·
(
w(1− α)− w(0.5)

)
+

u
(
u−1
(
w(0)u(x)

))
·
(
w(1)− w(1− α)

)
.

Noting that w(0) = 0, and w(1) = 1, we get:

URRDU(LEA) = u(x)
[
w(α)+

w(
2

3
) ·
(
w(0.5)− w(α)

)
+

w(
1

3
) ·
(
w(1− α)− w(0.5)

)]
.

Following Segal (1987, 1990), we furthermore assume that an RRDU decision maker
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does not distinguish between subjective and objective first-stage priors, yielding indifference

between a risky single-stage lottery involving objective probabilities (A-lottery) and an

ambiguous single-stage lottery involving subjective probabilities (E-lottery):

URRDU(LA) = URRDU(LE) = w(0.5)u(x).

It is easy to see that an RRDU decision maker displays ambiguity aversion (LA � LEA) if

her priors are not extreme (i.e., she allows for the possibility that urns contain at least one

red and one black ball; α < 0.5).6 Such a decision maker is indifferent between the A-lottery

and the E-lottery, but prefers both to the EA-lottery :

RRDU ⇒ LA ∼ LE � LEA.

RRDU can therefore accommodate classic ambiguity averse behavior for the standard

Ellsberg lotteries (LA � LEA), but not for the purely aleatory and epistemic lotteries

(LA � LE). RRDU can also accomodate compound lottery aversion (LA � LEA and

LE � LEA), but not both choice patterns predicted by epistemic uncertainty aversion

(LA � LEA and LEA � LE).

2.2.4 Recursive Expected Utility

RRDU assumes that the decision maker applies the same utility function to first- and

second-stage lotteries. This assumption is relaxed in the Recursive Expected Utility (REU)

model advanced by Klibanoff et al. (2005). In this model, the decision maker applies a

utility function us to (subjective) first-stage lotteries and a utility function uo to (objective)

second-stage lotteries, and ambiguity attitudes are determined by the relative concavities of

the two utility functions (which are again normalized to us(0) = 0 and uo(0) = 0). Aversion

to ambiguous prospects holds when us is more concave than uo, implying that the decision

maker demonstrates a higher degree of risk aversion when facing lotteries involving subjective

probabilities as compared to objective probabilities. REU coincides with SEU when us and

uo are identical.

We begin with an illustration of how an REU decision maker evaluates the EA-lottery —

an ambiguous, two-stage lottery with subjective probabilities in the first stage and objective

probabilities in the second stage. REU is formulated in three main steps. First, a decision

maker forms a subjective belief over possible urn distributions and derives the corresponding

second-stage lotteries based on this belief. Second, the decision maker constructs certainty

6In the case of extreme priors (α = 0.5) an RRDU decision maker would be indifferent between all three
lotteries.
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equivalents for all second-stage lotteries based on their respective expected utilities according

to uo. Third, these certainty equivalents are then employed as input in a subjective expected

utility evaluation using us. Consider the same decision scenario as in the previous section.

The unknown urns contain three balls and all potential urn compositions are considered

possible (all red, two red, one red, no red). Again, the decision maker assigns a probability

α to each of the two single-color scenarios (with α ≤ 0.5), while the residual probability

(1− 2α) is divided equally between the remaining two urn compositions (yielding 0.5− α).

Due to symmetry, the decision maker’s REU arising from the EA-lottery for either color is

UREU(LEA) =
[
αus

(
u−1
o

(
uo(x)

))]
+

(0.5− α)
[
us

(
u−1
o

(2

3
· uo(x)

))]
+

(0.5− α)
[
us

(
u−1
o

(1

3
· uo(x)

))]
+[

αus

(
u−1
o

(
uo(0)

))]
which reduces to

UREU(LEA) = αus(x) + (0.5− α)
[
us

(
u−1
o

(2

3
· uo(x)

))
+ us

(
u−1
o

(1

3
· uo(x)

))]
.

Because prior applications of REU do not distinguish risk attitudes when evaluating

objective lotteries in the first versus second stage (Halevy, 2007), the A-lottery is evaluated

as follows (applying the required transformation function us ◦ u−1
o ):

UREU(LA) = us

(
u−1
o

(
0.5uo(x) + 0.5uo(0)

))
= us

(
u−1
o

(
0.5uo(x)

))
.

Applying the same argument to single-stage, ambiguous lotteries involving subjective

probabilities (E-lottery) yields

UREU(LE) = αus(x) + αus(0) + (0.5− α)us(x) + (0.5− α)us(0)

= αus(x) + 0.5us(x)− αus(x)

= 0.5us(x).

Because ambiguity aversion implies that us is more concave than uo (Klibanoff et al.,

2005), an REU decision maker with extreme priors (i.e., α = 0.5) exhibits the following

preference pattern:

REU ⇒ LA � LEA ∼ LE.
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If an REU decision maker’s priors are not extreme (i.e., α < 0.5), the preference ordering

is as follows:

REU ⇒ LA � LEA � LE.

REU therefore accommodates ambiguity aversion (LA � LEA and LA � LE), but cannot

accommodate the full preference pattern predicted by compound lottery aversion (LA � LEA

and LE � LEA). However, REU can accommodate the full preference pattern predicted by

epistemic uncertainty aversion (LA � LEA and LEA � LE), but only if priors are not extreme

(i.e., decision makers allow for the possibility that urns contain at least one red and one black

ball).

2.2.5 Source Models with Second-order Probabilistic Sophistication

A model that can capture preferences for betting on different sources of uncertainty while

assuming second-order probabilistic sophistication (SPS) has been suggested by Ergin and

Gul (2009). Their model allows for violations of RCLA and can accommodate distinct

non-expected utility preferences across lottery stages.

In the following, we will assume an SPS decision maker who maximizes RRDU but employs

different probability weighting functions in the two stages. Instead of assuming different

utility functions for objective and subjective lotteries as in REU, the decision maker expresses

her lack of confidence in subjective probabilities by underweighting them more strongly than

objective probabilities. For empirical evidence suggesting that individuals tend to process

subjective probabilities more pessimistically than objective probabilities, see Tversky and

Fox (1995), Abdellaoui et al. (2011), and Baillon et al. (2018).

To illustrate, assume the same decision scenario as in the previous two sections when

evaluating the EA-lottery (LEA). The only difference is now that instead of applying the

same probability weighting function in both stages, we distinguish a weighting function that

is applied to first-stage (subjective) probabilities, ws, from a probability weighting function

that is applied to second-stage (objective) probabilities, wo. Both functions are assumed

to be strictly convex with nondecreasing elasticity (Segal, 1987). To capture the increased

pessimism towards subjective probabilities, ws must be more convex than wo. The decision

maker’s RDU arising from objective, second-stage lotteries therefore remains

URDU(x, p; 0, 1− p) = wo(p)u(x),

where u is a common utility function (normalized to u(0) = 0). The transformation of
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objective, second-stage utilities into certainty equivalents is also unchanged,

CERDU(x, p; 0, 1− p) = u−1
(
wo(p)u(x)

)
.

However, the next step in the valuation process differs. When evaluating the (ambiguous)

two-stage, mixed-uncertainty lottery (LEA), the decision maker still employs the obtained

certainty equivalents as prizes in the RDU formula. As before, the subjective probability

of the urn containing balls of only one color is α for each of the two single-color scenarios,

and the residual probability (1 − 2α) is divided equally between the remaining two urn

compositions (two red or one red), yielding 0.5 − α. Now instead of using the objective

weighting function wo, she employs the more convex subjective probability weighting function

ws to weight subjective priors, resulting in

USPS(LEA) = u(x)
[
ws(α)+

wo(
2

3
) ·
(
ws(0.5)− ws(α)

)
+

wo(
1

3
) ·
(
ws(1− α)− ws(0.5)

)]
.

As the SPS representation allows for distinguishing between objective and subjective

stage one priors, a corresponding decision maker is no longer indifferent between single-stage

objective (LA) and subjective lotteries (LE), but assigns distinct values to each:

USPS(LA) = wo(0.5)u(x),

USPS(LE) = ws(0.5)u(x).

Due to the stronger convexity of ws than wo, an SPS decision maker therefore prefers the

A-lottery to the E-lottery and prefers both to the EA-lottery :

SPS ⇒ LA � LE � LEA.

Hence, SPS accommodates ambiguity aversion (LA � LEA and LA � LE) and compound

lottery aversion (LA � LEA and LE � LEA), but not epistemic uncertainty aversion (LA �
LEA and LEA � LE).

2.2.6 Generic Source Models

Although source models with second-order probabilistic sophistication cannot accommodate

the simultaneous presence of ambiguity aversion and epistemic uncertainty aversion, source
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models that relax the assumption of probabilistic sophistication between sources are sufficiently

flexible to accommodate such preference patterns (see Abdellaoui et al., 2011, for a model

based on subjective probabilities from revealed preferences; see Tversky and Fox, 1995; Fox

and Tversky, 1998, for a model based on judged probabilities from introspective judgment).

We refer to these accounts as Generic Source Models (GSM).

Consider a decision maker who maximizes RDU, with probability weighting functions w

that vary by source of uncertainty i:

UGSM(x, p; 0, 1− p) = wi(p)u(x).

Assume, due to symmetry, no preference for betting on red versus black so that the subjective

probability7 of winning any lottery is 0.5. Also assume that each lottery, Li, entails a distinct

source of uncertainty, i ∈ {A,EA,E}. Under GSM, the utility of each lottery is given by:

UGSM(Li) = wi(0.5)u(x),

where wi is the weighting function associated with source i, also known as the “source

function.” The epistemic uncertainty aversion hypothesis states that ambiguity aversion is

driven by distaste for betting in situations where the decision maker feels comparatively

ignorant or unformed, especially when the balance of epistemic to aleatory uncertainty is

high. This can be accommodated within the GSM framework simply by assuming that the

elevation of the source function wi decreases (that is, the “degree of pessimism” in Abdellaoui

et al., 2011, increases) with the interaction of a decision maker’s comparative ignorance

and perceived balance of epistemicness to aleatoriness. Assuming decision makers consider

themselves less knowledgeable concerning unknown probabilities than known probabilities for

Ellsberg urns (Fox and Tversky, 1995), and assuming the majority color in an urn is seen as

more purely epistemic in nature than the outcome of a single draw from such an urn, then

wA(0.5) > wEA(0.5) > wE(0.5),

so that

GSM ⇒ LA � LEA � LE.

Hence, generic source models are, in principle, able to accommodate the simultaneous presence

7For simplicity in this example, we assume due to symmetry that the subjective probability p is 0.5. More
generally, in a prospect theory framework the source-dependent decision weight can be expressed for a
prospect that offers $x if event E obtains and nothing otherwise as wi[P (E)], where P is the subjective
probability (or, alternatively, judged probability) of event E (see Tversky and Fox, 1995; Fox and Tversky,
1998; Wakker, 2004).

17



of ambiguity aversion and epistemic uncertainty aversion. This, however, requires decision

makers to be more pessimistic about subjective probabilities when lotteries entail greater

epistemic uncertainty (i.e., more ignorance × epistemicness).

2.2.7 Theoretical Predictions: Summary

Taking stock of six prominent models of decision under uncertainty (SEU, CEU, RRDU,

REU, SPS, GSM), all models other than SEU can accommodate standard ambiguity averse

preferences (LA � LEA), and all models other than SEU and RRDU can also accommodate

strict ambiguity averse preferences in our extended Ellsberg paradigm (LA � LE). The critical

test concerns preferences between the E-lottery and the EA-lottery among ambiguity averse

individuals. While RRDU and SPS predict strict compound lottery aversion (LE � LEA)

among ambiguity averse individuals, only REU can, under the condition that priors are

not extreme, accommodate strict compound lottery seeking between these two lotteries

(LEA � LE) as predicted by the epistemic uncertainty aversion hypothesis. Additionally, the

GSM framework provides sufficient flexibility to allow for modelling preference patterns that

are consistent with our account.8

3 Experimental Evidence

We next turn to an experimental investigation of ambiguity and epistemic uncertainty aversion.

Studies 1 and 2 employ our extended Ellsberg paradigm to test whether ambiguity aversion

is more closely associated with epistemic uncertainty aversion or compound lottery aversion.

Study 3 extends this test to more naturalistic bets involving soccer matches. Study 4 examines

whether epistemic uncertainty aversion can lead to violations of stochastic dominance among

less knowledgeable individuals who seek an aleatory hedge. Studies 5 and 6 examine whether

the attractiveness of an aleatory hedge diminishes when reframed as more epistemic in nature.

As we will show, the results of Studies 1-4 contradict all aforementioned models other than

REU and GSM, and the results of Studies 5 and 6 contradict all models, including REU, but

can be accomodated by the flexibility of GSM.

For all studies we determined sample sizes in advance of data collection. We preregistered

hypotheses and analysis plans for all studies except Study 1. Materials, data, and code for all

studies can be found at https://researchbox.org/128&PEER_REVIEW_passcode=DFIFVM.

8Of course, flexibility of generic source models comes at the expense of specificity, a point on which we will
elaborate in the discussion.
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3.1 Study 1: Extended Ellsberg Paradigm

We recruited 200 subjects from an online labor market (www.prolific.ac) to participate in

a brief study in exchange for a £0.40 payment. Following the extended Ellsberg paradigm

outlined in Section 2.1, subjects made a series of pairwise choices between three lotteries

described in Table 1. The A-lottery involved a standard risky urn containing 50 red and

50 black poker chips, in which subjects would pick a color and then win a prize if a single

randomly drawn chip matched that color; as such, it can be represented as a single-stage

lottery involving purely aleatory uncertainty. The EA-lottery involved a standard Ellsberg

urn containing 101 red and black poker chips9 of unknown proportion, in which subjects

would pick a color and then win a prize if a single randomly drawn chip matched that color;

as such, it can be represented as a compound lottery involving a mixture of epistemic and

aleatory uncertainty. The E-lottery was identical to the EA-lottery except that instead of

drawing a single chip from the urn, the subject would draw all chips from the urn and win a

prize if he or she had correctly predicted the majority color; as such, it can be represented as

a single-stage lottery involving purely epistemic uncertainty.10

We presented lottery pairs in an order that was randomized for each subject, and for each

pair asked subjects to indicate the lottery they prefer. The large majority of participants

(91%) exhibited transitive preferences among their three choices.11 Looking first at choices

between the A-lottery and EA-lottery, we replicate the standard Ellsberg effect with 71% of

subjects preferring LA over LEA (p < 0.01 by a binomial test). Likewise, 70% of subjects

chose the risky single-stage A-lottery over the ambiguous single-stage E-lottery (p < 0.01),

another manifestation of ambiguity aversion. Most subjects (56%) demonstrate consistent

ambiguity aversion by preferring the A-lottery to both the EA-lottery and the E-lottery.

Our critical test involves the choice between the EA-lottery and E-lottery, in which a

distaste for compound lotteries predicts a preference for the single-stage lottery (LE � LEA)

among consistently ambiguity averse subjects (i.e., those who exhibit both LA � LEA and

LA � LE; N = 113). In contrast, a distaste for epistemic uncertainty predicts a preference for

the mixed-uncertainty lottery (LEA � LE) among ambiguity averse subjects. In accord with

the epistemic uncertainty aversion hypothesis, the majority of consistently ambiguity averse

subjects prefer the EA-lottery to the E-lottery (65%; p < 0.01). Hence, individuals who

exhibited consistent ambiguity aversion were nearly twice as likely to choose the compound,

mixed-uncertainty EA-lottery than the single-stage (and purely epistemic) E-lottery. We

9We increase the traditional number of balls from 100 to 101 for the EA-lottery in order to guarantee a single
majority color for the E-lottery and keep these two lotteries comparable.

10In this experiment we used generic labels “Lottery A,” “Lottery B,” and “Lottery C.”
11Note that if subjects responded randomly we would expect 75% transitive orderings.
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A-lottery EA-lottery E-lottery

Description: A bag is filled with exactly 50 red
and 50 black poker chips. First,
choose a color to bet on (Red or
Black). Next, draw a single chip
without looking from the bag. If
the chip you pulled out is the
color you predicted then you win
$100, otherwise you win nothing.

A bag is filled with 101 poker
chips that are red and black, but
you do not know their relative
proportion. First, choose a color
to bet on (Red or Black). Next,
draw a single chip without look-
ing from the bag. If the chip you
pulled out is the color you pre-
dicted then you win $100, other-
wise you win nothing.

A bag is filled with 101 poker
chips that are red and black, but
you do not know their relative
proportion. First, choose a color
to bet on (Red or Black). Next,
empty out the entire bag. If the
majority of chips in the bag are
the color you predicted then you
win $100, otherwise you win noth-
ing.

Dimension of
uncertainty:

Aleatory Epistemic and Aleatory Epistemic

Knightian
uncertainty:

Risk Ambiguity Ambiguity

Stage type: Single-stage Compound Single-stage

Table 1: Menu of alternatives employed in Study 1. The three lotteries employed in Study 1 as
described to subjects, who made choices between each pair. The table also displays key characteristics of
each lottery.

also note that the preference ordering predicted by a distaste for epistemic uncertainty

(LA � LEA � LE) is the modal preference ordering in the data, with 37% of all subjects

displaying this pattern of preferences (see columns 6 and 7 of Table 2).12

3.2 Study 2: Extended Ellsberg Paradigm – Replication and

Extension

In Study 2 we replicate the results of Study 1 while modifying the experimental design in a few

important respects. First, we recruited a sample of German university students who made their

decisions in a classroom setting rather than online. Second, choices were incentive-compatible:

subjects were informed that some respondents would be selected at random to have one of

their choices (also selected at random) to be played for real money. In particular, subjects

would win a e50 gift card if the color associated with their lottery choice was correct (and

e0 otherwise). Finally, we increased the sample size in Study 2 (N = 567) to provide greater

statistical power to analyze behavior not only among consistently ambiguity averse subjects,

but also among consistently ambiguity seeking individuals. Doing so allows us to further

distinguish preferences over compound lotteries versus epistemic uncertainty. If ambiguity

preferences are more generally associated with preferences for compound lotteries, then rare

instances of ambiguity seeking (LEA � LA and LE � LA) should also be associated with

12We can also examine the inverse analysis involving the proportion of subjects exhibiting classic ambiguity
aversion (LA � LEA) conditional on a consistent preference against the purely epistemic lottery. Among
subjects with a consistent distaste for the purely epistemic lottery (LA � LE and LEA � LE ; N = 90), a
significant majority exhibited classic ambiguity aversion (82% showed LA � LEA; p < 0.01).
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Bet A:
In this bet, Box A as shown below is used.
Box A contains exactly 50 red and 50 black balls.

50 red

+ 50 black

= 100 balls

Box A First, you choose a color to bet on (red or black).

Afterwards you draw, without looking, exactly one ball from Box A.

If the color of your drawn ball matches the color you bet on, you
may win a €50 gift card. Otherwise you win nothing.

Bet B:
In this bet, Box B as shown below is used. Box B contains 101 balls in total, 
but you do not know how many balls are red and how many balls are black.

First, you choose a color to bet on (red or black).

Afterwards you draw, without looking, exactly one ball from Box B.

If the color of your drawn ball matches the color you bet on, you
may win a €50 gift card. Otherwise you win nothing.

? red

+ ? black

= 101 balls

Box B

Bet C:
In this bet, Box C as shown below is used. Box C contains 101 balls in total, 
but you do not know how many balls are red and how many balls are black.

First, you choose a color to bet on (red or black).

Afterwards you empty out Box C completely.

If the majority of balls from Box C match the color you bet on, you
may win a €50 gift card. Otherwise you win nothing.

? red

+ ? black

= 101 balls

Box C

Figure 2: Menu of alternatives employed in Study 2. The three lotteries employed in Study 2 as
described to subjects, who made choices between each pair. Bet A can be interpreted as a single-stage
A-lottery which entails aleatory uncertainty only. Bet B can be interpreted as a two-stage, mixed-uncertainty
EA-lottery. Bet C can be interpreted as a single-stage E-lottery which only entails epistemic uncertainty.

compound lottery seeking (LEA � LE). If ambiguity preferences are instead associated with

preferences for epistemic uncertainty, then ambiguity seeking behavior should be associated

with epistemic uncertainty seeking (LE � LEA). Note that none of the prominent models

considered in Section 2, other than REU without extreme priors or GSM, can accommodate

the simultaneous observation of ambiguity seeking and a strict preference for the E-lottery

over the EA-lottery as predicted by the epistemic uncertainty hypothesis.

The structure of Study 2 was otherwise similar to that of Study 1. We presented first-

year undergraduate business administration students with three pairs of lotteries using our

extended Ellsberg paradigm, which they completed in a classroom setting. We presented

choices on separate questionnaire pages and in an order that was randomized for each subject.

For each choice, subjects indicated their preferred lottery and chose a color to bet on (red or

black). Figure 2 provides a description of lotteries used in Study 2 (translated from German).

The proportion of subjects indicating each preference ordering is displayed in the last two

columns of Table 2.

Similar to Study 1, more than 90% of respondents exhibited transitive preference orderings.

Also similar to Study 1, most subjects displayed ambiguity aversion, preferring the A-lottery
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Choice patterns Study 1 Study 2

LA � LEA LA � LE LEA � LE Preference ordering Interpretation N % N %

1 1 1 LA � LEA � LE consistent ambiguity aversion
epistemic uncertainty aversion

74 37% 175 31%

1 1 0 LA � LE � LEA consistent ambiguity aversion
compound lottery aversion

39 19% 140 25%

0 0 0 LE � LEA � LA consistent ambiguity seeking
epistemic uncertainty seeking

16 8% 69 12%

0 0 1 LEA � LE � LA consistent ambiguity seeking
compound lottery seeking

17 9% 39 7%

0 1 1 LEA � LA � LE no consistent ambiguity attitude
compound lottery seeking

16 8% 42 7%

1 0 0 LE � LA � LEA no consistent ambiguity attitude
compound lottery aversion

19 10% 47 8%

0 1 0 intransitive 10 5% 30 5%

1 0 1 intransitive 9 4% 25 4%

Table 2: Preference orderings among lotteries in Studies 1 and 2. The first column indicates
whether or not subjects in the corresponding row preferred the purely aleatory lottery to the mixed epistemic-
aleatory lottery (i.e., 1 indicates LA � LEA; 0 indicates LEA � LA); the second column indicates whether or
not subjects preferred the purely aleatory lottery to the purely epistemic lottery; the third column indicates
whether or not subjects preferred the mixed epistemic-aleatory lottery to the purely epistemic lottery. The
fourth column presents the resulting preference ordering among lotteries. The fifth column indicates the
interpretations most consistent with these preference orderings. The last four columns provide the absolute
and relative frequencies of corresponding choice patterns among subjects in Studies 1 and 2.

over the EA-lottery (68%; p < 0.01) and the A-lottery over the E-lottery (68%; p < 0.01).

Again, most subjects (56%) exhibited consistent ambiguity aversion by preferring the A-lottery

to both the EA-lottery and the E-lottery.

Replicating our key result from Study 1, the majority of consistently ambiguity averse

subjects (who indicated both LA � LEA and LA � LE; N = 315) also exhibited epistemic

uncertainty aversion rather than compound lottery aversion (56% of these subjects indicated

LEA � LE; p < 0.05). As in Study 1, this was the modal preference ordering (31% of all

subjects). Meanwhile, the majority of consistently ambiguity seeking subjects (LEA � LA

and LE � LA; N = 108) also exhibited epistemic uncertainty seeking behavior rather than

compound lottery seeking (64% of these subjects indicated LE � LEA; p < 0.01). Finally, we

note that the small proportion of transitive subjects without consistent ambiguity attitudes

(LA � LEA and LE � LA, or LEA � LA and LA � LE; N = 89) exhibit no significant

preference between the purely epistemic lottery and the mixed-uncertainty lottery (47% of

these subjects indicated LEA � LE; p = 0.40).13

13As in Study 1, we also conducted the inverse analysis involving the proportion of subjects exhibiting
classic ambiguity aversion (LA � LEA) conditional on a consistent preference for or against the purely
epistemic lottery. Among subjects with a consistent distaste for the purely epistemic lottery (LA � LE and
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For Studies 1 and 2, we also examined the proportion of preference orderings, among

those with consistent ambiguity attitudes, that were uniquely consistent with our account

concerning sensitivity to epistemic uncertainty (i.e., LA � LEA � LE or LE � LEA � LA) to

preference orderings uniquely consistent with the notion of sensitivity to compound lotteries

(i.e., LA � LE � LEA or LEA � LE � LA). That is, we compared the choice proportions in

rows 1 and 3 to choice proportions in rows 2 and 4 of Table 2. For both studies a significantly

larger percentage of choices are consistent with sensitivity to epistemic uncertainty than

sensitivity to compound lotteries (Study 1: 45% vs 28%, p < 0.01; Study 2: 43% vs 32%,

p < 0.01).

3.3 Study 3: Naturalistic Bets

Studies 1 and 2 provided a critical test of the present account against prominent economic

models that cannot accommodate the simultaneous observation of ambiguity aversion and

compound lottery seeking, or ambiguity seeking and compound lottery aversion (which are

predicted by none of the above models, except for REU and GSM). In Study 3 we develop a

research design using analogous bets on an upcoming soccer match, and in which we also

ask participants to rate their level of knowledge concerning the match. The experimental

design provides three enhancements over the previous studies. First, we move from the

highly stylized domain of balls and urns to naturalistic events on which it is common to bet

outside the laboratory. Second, our analysis no longer relies on the assumption of symmetric

priors, and instead examines preferences among complementary bets. Finally, we exploit

natural variation in self-rated expertise to examine the hypothesis that preference for an

aleatory hedge is stronger among subjects who feel relatively ignorant concerning the events

in question.

A bet on which team will win an upcoming soccer match can be interpreted as a two-stage

lottery much like a random draw from the unknown urn in the two-color Ellsberg paradigm.

In the first stage, decision makers identify the team favored to win the game by assessing the

prior probability of each team winning, analogous to choosing a color on which to bet by

assessing one’s prior over the composition of the unknown urn. The second stage represents

the realization of a particular game outcome between the two teams, analogous to a random

draw from the unknown urn. Because the first-stage exclusively depends on knowledge about

the relative strength or skill of the two teams and how they match up (similar to determining

LEA � LE ; N = 217), a significant majority exhibited classic ambiguity aversion (81% showed LA � LEA;
p < 0.01). Among subjects with a consistent preference for the purely epistemic lottery (LE � LA and
LE � LEA, N = 116), a significant majority exhibited classic ambiguity seeking (59% showed LEA � LA;
p < 0.01). These patterns again accord with the hypothesis that classic ambiguity aversion is associated
with aversion toward epistemic uncertainty rather than compound lotteries.
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the proportion of red to black balls in an urn), selecting which of two teams is currently

favored to win by bookmakers entails purely epistemic uncertainty. In contrast, the second

stage in which outcomes are realized is largely aleatory in nature because different outcomes

can occur by chance — sometimes the weaker team prevails.14

We exploit these differences in uncertainty across stages to design lotteries that entail

purely epistemic uncertainty or a mixture of epistemic and aleatory uncertainty. Prior to

an upcoming soccer match in Germany between Cologne and Augsburg, we asked Münster

residents to choose between one of the following two bets:

(f) e100 if Cologne is currently favored by bookmakers to win the upcoming match

with Augsburg.

(g) e100 if Cologne wins the upcoming match with Augsburg.

We also asked subjects to choose between two additional bets involving events that are

complementary to the first pair:

(f ′) e100 if Augsburg or neither team is currently favored by bookmakers to win the

upcoming match with Cologne.

(g′) e100 if Augsburg wins or ties the match with Cologne.

Let p be the subjective probability that bookmakers currently favor Cologne, and q be the

subjective probability that Cologne wins the match. It follows under SEU that 1− p is the

subjective probability that bookmakers currently favor Augsburg or neither team, and 1− q
is the subjective probability that Augsburg wins or ties the match. It is clear that under

SEU, f � g iff g′ � f ′ and thus, that SEU can accommodate only two of the four possible

preference patterns in which subjects bet on one team to be favored and the other team to

win (f and g′, or g and f ′).

Our first prediction is that subjects who rate themselves more knowledgeable about the

upcoming game are more likely to bet consistently with SEU. For instance, if a high-knowledge

subject strongly believes that Cologne is currently favored by bookmakers over Augsburg,

then she should bet on Cologne being favored (f) rather than Cologne winning the match

(g), since soccer game outcomes are partly random and Augsburg could potentially win or tie

the match. By the same logic, this individual should also bet on Augsburg winning or tying

the match (g′) rather than Augsburg or neither team being currently favored by bookmakers

(f ′), since she strongly believes the latter to be false.

14Of course, bookmaker odds do not necessarily capture the objective prior odds over the outcome of the
soccer match, but they are the best available and most canonical proxy that is seen as a knowable (epistemic)
and not particularly random (aleatory) event.
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Our more central prediction concerns the betting behavior of less knowledgeable subjects.

Decision makers can violate SEU in two distinct ways. They can choose to bet twice on the

team currently favored by bookmakers (f and f ′), and thereby exhibit a preference for the

single-stage, purely epistemic lotteries. Alternatively, subjects can bet twice on the outcome

of the upcoming game (g and g′) and thereby exhibit a preference for two-stage lotteries that

offer an aleatory hedge. While the former combination (f � g and f ′ � g′) is consistent with

compound lottery aversion, the latter combination (g � f and g′ � f ′) is consistent with

aversion to epistemic uncertainty. Thus, we predict that most subjects who violate SEU will

bet twice on the game rather than twice on which team is currently favored.

We conducted a paper-and-pencil based survey at a local government-run citizen center

in Münster, Germany (N = 721).15 Subjects were offered a chocolate bar as compensation

for completing the survey and were also informed that some respondents would be selected at

random to have one of their (randomly-selected) bets played for real money. We distributed

gift cards worth e600 in total among subjects who were selected and won their bet. Specifically,

subjects chose between (f) “Win e100 gift card if the current betting odds on bet365.com

say that [Cologne] is favored to win the game against [Augsburg] on November 26,” or (g)

“Win e100 gift card if [Cologne] wins the game against [Augsburg] on November 26.” For

the second bet, subjects chose between (f ′) “Win e100 gift card if the current betting odds

on bet365.com say that [Augsburg] is favored to win or draw the game against [Cologne] on

November 26,”), or (g′) “Win e100 gift card if [Augsburg] wins or draws the game against

[Cologne] on November 26.”16 Half of subjects completed the survey in the order described

above, while the other half of subjects completed the survey in the reverse order (in both

cases, bets were shown on separate pages).17 After choosing between bets, subjects rated how

15The citizen center is an attractive location to recruit survey subjects for two reasons. First, all residents
must come to the citizen center to get their IDs, passports, or file their changes of address, enabling us to
sample a broad pool of the general public. Second, visitors of the citizen center usually face considerable
waiting times which made our study a welcome distraction, ensuring high participation rates.

16The quotes above are translated from the original German. We note that the two teams (Cologne and
Augsburg) were not popular among our sample (which was drawn from residents of Münster). This was by
design to minimize the likelihood that betting behavior would be driven primarily by fan loyalty. In fact,
none of the subjects in our sample indicated that they rooted for either Cologne or Augsburg. Second, it
was unlikely that subjects would know definitively which team was favored, as the betting odds at that
time were fairly even. While Cologne was favored to win the game (payoff multiplier in case of winning the
bet was 1.72), a tie was also considered quite likely (3.50), and even an Augsburg win was still imaginable
among bookmakers (5.00). The game was to be played about two weeks after we conducted the survey.

17For half of subjects, we included the following statement after describing the betting context and before
presenting the actual bets: “We chose these bets because the vast majority of citizens in Münster report
that they are familiar with these two teams.” Emphasizing the existence of a relevant peer group that is
well-informed regarding the decision context is an effective tool to induce a comparative ignorance effect
(Fox and Tversky, 1995). Our results indicate that including the comparison with a well-informed peer
group did indeed have the desired effect: subjects who were exposed to the comparison reported lower
subjective knowledge than their unexposed counterparts (means were 2.31 vs. 2.68 on a 7-point scale;
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Figure 3: Impact of self-rated knowledge on subjects’ betting behavior in Study 3. The figure
displays betting behavior across self-rated knowledge levels. For each knowledge level, it provides the
percentage of subjects who bet consistently with SEU preferences (by betting once on the game, and once
on the favorite), bet inconsistently and in line with epistemic uncertainty aversion (by betting twice on the
outcome of the game), or bet inconsistently in line with compound lottery aversion (by betting twice on the
favorite).

knowledgeable they felt about the upcoming soccer match on a scale ranging from 1 (“not at

all”) to 7 (“very much”). The mean knowledge rating in our sample was 2.50 with a standard

deviation of 1.80. About half of the survey participants were female (52%) and their average

age was 30 years old.

Figure 3 displays the percentage of response profiles consistent with SEU, epistemic

uncertainty aversion, and compound lottery aversion as a function of self-rated knowledge.

Overall, 42% of participants provided responses consistent with SEU (by betting once on

the current favorite and once on the upcoming game) and, as expected, this tendency

increased as a function of self-rated knowledge. Based on a multinomial probit model, with

choice patterns regressed on subjective knowledge, the likelihood of providing SEU-consistent

responses increased by an average of 3.4 points for each one-point increase in self-rated

knowledge (p < 0.01 based on the average marginal effect). As can be seen in Figure 3, the

probability of betting consistently with SEU increased by more than half when comparing

the highest-knowledge group of subjects (those rating their knowledge a 7 out of 7) to the

p < 0.01). Because the choice patterns across conditions did not otherwise differ significantly, we do not
distinguish between them in the results that follow.
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lowest-knowledge group of subjects (those rating their knowledge a 1 out of 7).

Our second and more central prediction concerns whether subjects who violated SEU prefer

single-stage but purely epistemic lotteries (f and f ′) to mixed-uncertainty but compound

lotteries (g and g′). Consistent with the epistemic uncertainty aversion hypothesis (and

contrary to compound lottery aversion), 68% of SEU-inconsistent subjects preferred to bet on

both sides of the upcoming match (i.e., on mixed-uncertainty, compound lotteries), while only

32% of subjects preferred to bet on both sides of the team currently favored by bookmakers

(i.e., on purely epistemic, single-stage lotteries; p < 0.01 by a binomial test). Furthermore,

and consistent with the epistemic uncertainty aversion hypothesis, the tendency to bet twice

on the upcoming match decreased as a function of self-rated knowledge (p < 0.01 based

on the average marginal effect). Meanwhile, we observe no significant correlation between

self-rated knowledge and the tendency to bet twice on which team was currently favored

by bookmakers (p = 0.43 based on the average marginal effect), indicating that compound

lottery averse choices were not reliably related to decision maker knowledge.

3.4 Study 4: Violations of Dominance

Our central thesis is that ambiguity aversion reflects a distaste for acting on one’s relative

ignorance, to the extent that uncertainty is seen as epistemic in nature. In Study 4 we

exogenously vary feelings of relative ignorance and examine its effect on preference for an

aleatory hedge. Study 4 also examines whether epistemic uncertainty aversion can induce

decision makers to hedge against their ignorance by choosing stochastically dominated

alternatives that add aleatory uncertainty.

We employ two-alternative forced choice trivia questions (i.e., questions in which one of

two possible answers is correct) as target events that entail purely epistemic uncertainty. In

particular, we asked subjects to choose between a lottery where outcomes depend entirely

on correctly answering the trivia question versus a lottery where outcomes depend on both

trivia performance and chance. In this setup, the second option is stochastically dominated

by the first option, and only the second option entails a compound lottery.18 Thus, strict

preferences for the second option are inconsistent with both SEU and compound lottery

aversion. Moreover, it can be shown that a strict preference for the second option cannot be

accommodated by the other prominent models of decision under uncertainty discussed above

(CEU, RRDU, Source models with SPS), except for REU and GSM.19 However, to the extent

18To illustrate why the compound lottery is stochastically dominated by the simple lottery, consider a decision
maker with a subjective probability of 0.80 that she correctly answered the trivia question. This decision
maker would face a choice between a (subjective) 0.80 chance of winning e100 or a (0.80× 0.90) + (0.20×
0.10) = 0.74 chance of winning e100.

19In case of GSM, the explicit compound lottery would be treated as a distinct source of uncertainty from
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Alternative A Alternative B

Description: If your answer to the geography question above
is right, you will win a e100 gift card.

If your answer to the geography question above
is wrong, you will win nothing.

If your answer to the geography question above
is right, you will receive a 90% chance to win a
e100 gift card.

If your answer to the geography question above
is wrong, you will receive a 10% chance to win a
e100 gift card.

Dimension of
uncertainty:

Epistemic Epistemic and Aleatory

Stage type: Single-stage Compound

Table 3: Menu of alternatives employed in Study 4. After answering their respective trivia questions,
subjects in the easy question and hard question treatments were asked to choose between the lotteries listed
above. The table also lists the type of uncertainty and stage type for each lottery.

that individuals are reluctant to bet on their own ignorance under epistemic uncertainty, we

expect that less confident subjects will find the second option more attractive.20 In addition,

we experimentally vary the difficulty of the trivia question to causally identify whether feelings

of relative ignorance drive an aversion to epistemic uncertainty.

We recruited 132 advanced undergraduate students enrolled in a course on rational

decision making at the University of Münster, who had received some instruction on formal

approaches to decision under uncertainty prior to completing this study. At the beginning of

the paper-and-pencil based survey, which was administered in class, we informed subjects that

some respondents would be selected at random to receive the outcome of their preferred lottery

for real money. Half the subjects were randomly assigned to the easy question treatment

and chose which of two German states, Baden-Württemberg or North Rhine-Westphalia,

was larger in square kilometers. The other half of subjects were assigned to the difficult

question treatment and chose whether Schleswig-Holstein or Thuringia was larger in square

kilometers.21 After providing their answer to the geography question, subjects in both

treatments chose between the two options displayed in Table 3.

For Alternative A, winning the e100 gift card depended entirely on answering the geogra-

phy question correctly, and as such entailed purely epistemic uncertainty. For Alternative B,

subjects who answered correctly would win the gift card with 90% probability and subjects

the purely epistemic lottery.
20Again, this prediction can be accomodated only by REU and GSM.
21Schleswig-Holstein and Thuringia are smaller in size, less populated, and generally less familiar than either

German state in the easy question treatment. The two states in our difficult question treatment are also
closer to each other in geographic size than Baden-Württemberg and North Rhine-Westphalia. We thus
expected these features to make for a more difficult general knowledge question. Confirming our a priori
expectation, the average judged probability that a subject answered correctly was lower for the difficult
question treatment than for the easy question treatment (mean judged probabilities of answering correctly
were 0.65 and 0.76, respectively; p < 0.01).
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Figure 4: Violations of dominance as a function of confidence in Study 4. This figure displays
the predicted probability of selecting the (dominated) compound lottery over the single-stage lottery as a
function of confidence (i.e., judged probability of answering the trivia question correctly). The left panel
plots this relationship for the easy question treatment, and the right panel plots this relationship for the
difficult question treatment. Predicted probabilities are calculated based on the average marginal effects from
a probit regression. Error bands represent 95% confidence intervals.

who answered incorrectly would win the gift card with 10% probability. Due to the ran-

domness in the second stage, Alternative B represents a compound lottery that entails both

epistemic and aleatory uncertainty. Finally, subjects provided their subjective probability of

having answered the trivia question correctly (from 50% to 100%). Note that, when reduction

of compound lotteries applies, opting for Alternative B strictly violates first-order stochastic

dominance for any subjective probability greater than 0.50.

Results of Study 4 accord with the epistemic uncertainty aversion hypothesis. Subjects

were more likely to choose the compound lottery (Alternative B) when responding to a

difficult question (55%) than when responding to an easy question (36%), z = 2.10, p < 0.05.

Note that a preference for Alternative B (46% of subjects across conditions) violates both

SEU and most prominent models of ambiguity aversion, regardless of question difficulty. We

also find, as predicted, that in both treatments the preference for Alternative B increases

as confidence decreases (see Figure 4). Based on a probit model, with choices regressed on

confidence, a one-point decrease in subjective probability of answering the geography question

correctly resulted in an average 1.1-point increase in choosing Alternative B (for both easy

and difficult questions; in both cases p < 0.01 based on the average marginal effects).

Because subjects were randomly assigned to easy and difficult questions, we can obtain

direct causal estimates of how confidence affects a preference for the aleatory hedge (Alter-

native B). Using an instrumental variables probit model, with confidence instrumented on

question difficulty, we find that on average a one-point decrease in confidence leads to a 1.6

percentage point increase in selecting Alternative B (p < 0.01 based on the average marginal
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effect). This suggests that increasing ignorance is associated with a stronger preference for

compound lotteries that provide an aleatory hedge.22

3.5 Study 5: Locating the Aleatory Hedge in the Past vs. Future

Our thesis in this paper is that ambiguity aversion reflects a distaste for acting on one’s

relative ignorance to the extent that uncertainty is seen as epistemic in nature. In Study 4 we

experimentally varied question difficulty and find that relative ignorance amplifies epistemic

uncertainty aversion. In Study 5 we experimentally vary whether a compound lottery stage is

treated as more epistemic (versus more aleatory) influences the attractiveness of an aleatory

hedge among participants who view themselves as relatively ignorant. In particular, we

examine whether attractiveness of the aleatory hedge diminishes when chance is located in

the past, prior to the epistemic stage of the lottery (rather than in the future, following

resolution of the epistemic stage).

Past behavioral research suggests that people prefer betting on random events that have

not yet been resolved to random events whose results are already resolved but unknown. For

instance, Rothbart and Snyder (1970) found that subjects are willing to bet more money

on the outcome of a die that has yet to be rolled than one that has already been rolled

but whose outcome is unknown (for related results see Brun and Teigen, 1990; Heath and

Tversky, 1991). One interpretation of this result is that random events that have already

been resolved, even if unknown, take on an appearance of epistemic uncertainty in a way

that future random events do not. According to our hypothesis, then, locating the aleatory

component of a mixed-uncertainty prospect in the past should make that lottery appear less

attractive to decision makers. Such a timing-related dependency of the value of the aleatory

hedge is consistent with theoretical predictions of Saito (2015), Ke and Zhang (2020), and

GSM, however cannot be accommodated by REU.

Our experimental intervention locates the aleatory hedge in the past, which affects not

only stage timing (randomization takes place in the past versus future) but also stage ordering

(aleatory hedge represents the first versus second stage of the lottery). Note that for compound

lotteries with independent stages, such as those we examine here, models of decision under

uncertainty and ambiguity typically imply that the ordering of lottery stages is irrelevant.

In particular, Anscombe and Aumann’s (1963) axiomatization of SEU explicitly assumes

22It is worth acknowledging that the degree of stochastic dominance also increases as subjective probability
of answering correctly increases (the percentage difference in subjective probability of winning the prize
decreases by 0.20 for every 1 percentage point increase in confidence). Thus, the negative correlation
between subjective confidence and choosing the dominated option may be driven in part by sensitivity
to the degree of stochastic dominance. However, this factor cannot explain the systematic preference for
dominated lotteries among participants who feel relatively ignorant (i.e., report probabilities close to 0.50).
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that the order of lottery stages should not affect preferences (Assumption 2: Reversal of

Compound Lotteries, p. 201). Thus, a diminished preference for the aleatory hedge when it

is located in the first rather than second lottery stage would not only violate REU but also

Anscombe and Aumann’s (1963) second assumption.23

We recruited 500 subjects from an online labor market (www.prolific.ac) to participate

in a brief study in exchange for a $0.30 payment. Because our manipulation of timing is

subtle and depends on keen attention of subjects, we preregistered recruitment of a large

sample in order to allow us to only retain subjects who passed a rigorous comprehension check

at the end of the experiment.24 We randomly assigned subjects to one of two treatments. In

the first treatment (randomization after choosing), we asked subjects to first answer which

river they thought was longer: the Amazon or the Nile. They next estimated the probability

of having answered correctly (from 50% to 100%) and then chose one of the following options:

Alternative A
If your answer to the trivia question above is correct, then you receive $100.
If your answer to the trivia question above is incorrect, then you receive nothing.

Alternative B
If your answer to the trivia question above is correct then an experimenter will
roll a fair six-sided die. If the experimenter’s die lands on 1, 2, 3, 4, or 5 then you
receive $100.
If your answer to the trivia question above is incorrect then an experimenter will
roll a fair six-sided die. If the experimenter’s die lands on 6 then you receive $100.

As in Study 4, Alternative A can be interpreted as a single-stage lottery that entails purely

epistemic uncertainty. Meanwhile, Alternative B can be interpreted as a compound lottery

that entails epistemic uncertainty in the first stage and aleatory uncertainty in the second

stage. Note that, as was the case in Study 4, Alternative B is stochastically dominated

23In REU, more uncertain events are always resolved first, followed by resolving the less uncertain events
(for a discussion see He, 2021). Hence, reversing the stages of a compound lottery that differ in the degree
of uncertainty (aleatory vs. epistemic) does not change the fact that an REU decision maker treats such
a prospect as a “horse-roulette” (i.e., epistemic-aleatory) lottery. Changing the order of lottery stages
therefore cannot alter the attractiveness of the aleatory hedge in REU.

24At the end of the study subjects responded to three comprehension questions: (1) “Did the option with
the dice roll involve a die thrown by the experimenter before or after you answered the trivia question?”
(2) “Did the previous task involve an option where you could win $100 even if you answered the trivia
question incorrectly?” (3) “What was the probability that participants who chose the second option would
win $100 if they answered the trivia question correctly?” We excluded subjects who answered any of these
comprehension questions incorrectly. Also, since our experiment involved a trivia question that could be
answered through an internet search, we implemented a second exclusion criteria that subjects not browse
away at any point during the experiment (we used software to track browsing behavior; Permut et al.,
2019). Our final sample based on these criteria consisted of responses from 149 subjects.
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by Alternative A for subjective probabilities greater than 0.50, assuming that reduction of

compound lotteries applies.

The second treatment (randomization before choosing) was identical to the first treatment

except that we reversed the ordering of the lottery stages for Alternative B. We first informed

subjects about the experimenter’s dice roll as follows:

An experimenter rolls a fair six-sided die and privately observes what number
the die landed on. If the die landed on 1, 2, 3, 4, or 5 then the experimenter
writes down ‘Correct.’ If the die landed on 6 then the experimenter writes down
‘Incorrect.’ You do not know what the experimenter wrote down.

After receiving this information subjects then answered the same trivia question involving

the length of the Amazon and Nile and estimated the probability of having answered the

trivia question correctly (from 50% to 100%). They next chose one of the following options:

Alternative A
If your answer to the trivia question above is correct, then you receive $100.
If your answer to the trivia question above is incorrect, then you receive nothing.

Alternative B
If the experimenter wrote down “Correct” then you receive $100 only if you
answered correctly.
If the experimenter wrote down “Incorrect” then you receive $100 only if you
answered incorrectly.

Note that the choice menu for the second treatment involves the same probability distributions

over outcomes as the first treatment. Importantly, we do not observe significant differences on

responses to the trivia question as a function of experimental treatment (z = 1.12, p = 0.265),

nor do we see significant differences in confidence of having answered the question correctly25

(t147 = 0.15, p = 0.880).

Results accord with the epistemic uncertainty aversion hypothesis. Subjects were more

likely to choose Alternative B when the aleatory hedge was located as a second-stage lottery

in the future (46%) than as a first-stage lottery in the past (30%), z = 1.92, p = 0.055. Note

that as in Study 4 any subject who prefers Alternative B (40% of subjects across treatments)

violates both SEU and compound lottery aversion. Additionally, we find that preference for

Alternative B generally increases as confidence decreases (see Figure 5).

In the randomization-after-choosing treatment, which closely resembles the choice menu

from Study 4, a one-point decrease in confidence resulted on average in a 0.8-point increase of

25We also find a null effect when examining differences in the distributions of confidence ratings across the
two conditions (p = 0.697 by a Kolmogorov-Smirnov test).
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Figure 5: Violations of dominance as a function of confidence in Study 5. This figure displays
the predicted probability of selecting the (dominated) compound lottery over the single-stage lottery as a
function of confidence (judged probability of answering the trivia question correctly). The left panel plots
this relationship in the randomization-before-choosing treatment, and the right panel plots this relationship
for the randomization-after-choosing treatment. Predicted probabilities are calculated based on the average
marginal effects from a probit regression. Error bands represent 95% confidence intervals.

choosing Alternative B (p < 0.01 based on the average marginal effect). In the randomization-

before-choosing treatment, however, the effect of confidence on choice is no longer statistically

significant (p = 0.284 based on the average marginal effect). It worth noting that the

dampening effect for the second treatment compared to the first is consistent with the

interpretation that random events located in the past are construed as more epistemic,

thereby making Alternative B less attractive to low-confidence subjects because it is less

likely to be seen as an aleatory hedge. This said, a post hoc comparison of the coefficients for

the two average marginal effect are not statistically different from one another (p = 0.379),

so this interpretation should be treated as tentative.

3.6 Study 6: Reframing the Aleatory Hedge as Epistemic

In our previous study, we attempted to influence the impact of the aleatory hedge by varying

the temporal order of the stages involved in the compound lottery (Alternative B). In Study 6,

we keep the temporal ordering of the compound lottery’s stages fixed and instead attempt to

influence the impact of the aleatory hedge by reframing the description of Alternative B to

either highlight or obscure the aleatory component of the lottery. We expected that reframing

the compound lottery in a way that integrates the chance component with the outcome of

the answer to the trivia question should neutralize the attractiveness of the aleatory hedge.

Alternative B should thus be viewed as less attractive when framed in this manner, especially

among subjects who feel relatively ignorant about the trivia question. Among the models
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reviewed in this paper, only GSM can accomodate the difference in attractiveness of the

compound lottery under different frames.

We recruited 404 subjects from an online labor market (www.mturk.com) to participate

in a brief study in exchange for a $0.35 payment and also a chance to win a $100 prize for an

unrelated task that came after the present study. We randomly assigned subjects to one of

two treatments. In the first treatment (standard frame), we asked subjects to first answer

which river they thought was longer between the Amazon and the Nile. Next, they choose

between the following options:

Alternative A
If your answer to the question above is right, you win $200.
If your answer to the question above is wrong, you win nothing.

Alternative B
If your answer to the question above is right, you have a 90% chance to win $200.
If your answer to the question above is wrong, you have a 10% chance to win
$200.

Finally, we asked subjects to estimate their probability of having answered the trivia question

correctly (from 50% to 100%).

In the second treatment (switch frame), the subjects completed the same task except

were offered the following two options after answering the trivia question:

Alternative A
If your answer to the question above is right, you win $200.
If your answer to the question above is wrong, you win nothing.

Alternative B
There is a 10% chance that your answer to the question above will be switched,
and a 90% chance your answer will remain the same. This will be your final answer.

If your final answer is right, you win $200. If your final answer is wrong, you win
nothing.

Note that options in the switch frame are extensionally equivalent to options in the standard

frame. The only difference is that the description of Alternative B no longer explicitly

segregates the aleatory hedge, but instead frames the chance element as part of the epistemic

component of the lottery. Importantly, we do not observe significant differences on responses

to the trivia question as a function of experimental treatment (z = 0.20, p = 0.844), nor
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Figure 6: Violations of dominance as a function of confidence in Study 6. This figure displays
the predicted probability of selecting the (dominated) compound lottery over the single-stage lottery as a
function of confidence (judged probability of answering the trivia question correctly). The left panel plots
this relationship for the switch frame treatment, and the right panel plots this relationship for the standard
frame treatment. Predicted probabilities are calculated based on the average marginal effects from a probit
regression. Error bands represent 95% confidence intervals.

do we see significant differences in confidence of having answered the question correctly26

(t402 = 1.45, p = 0.149).

Results again accord with the epistemic uncertainty aversion hypothesis. Subjects were

considerably more likely to choose Alternative B in the standard frame where the aleatory

hedge is clearly segregated from the epistemic component of the compound lottery (47%) than

in the switch frame where the chance component is integrated with the epistemic component

of the compound lottery (8%), z = 8.64, p < 0.01. Note again that any subject preferring

Alternative B (27% of subjects across treatments) violates both SEU and compound lottery

aversion. Finally, we replicate the finding that preference for Alternative B increases as

confidence decreases (see Figure 6). In the standard frame, a 1-point decrease in confidence

resulted on average in a 0.8-point increase of choosing Alternative B (p < 0.01 based on

the average marginal effect). In the switch frame, the effect of confidence on choice is

dampened as in Study 5 but in this case remains statistically significant (p < 0.01 based

on the average marginal effect). However, this time we find that the two average marginal

effects are statistically different from one another (p = 0.033). This dampening effect for the

second treatment is consistent with the interpretation that obscuring the chance component

of Alternative B made the option especially less attractive to low-confidence subjects because

it is less likely to be seen as an aleatory hedge.

26We also find a null effect when examining differences in the distributions of confidence ratings across the
two conditions (p = 0.496 by a Kolmogorov-Smirnov test).
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4 Discussion

We extend prior psychological accounts of decision under uncertainty to argue that ambiguity

aversion reflects a distaste for betting on one’s relative ignorance to the extent that events are

seen as inherently knowable or epistemic in nature. In contrast, uncertainty viewed as random

or aleatory in nature can provide an attractive hedge against betting on one’s ignorance.

We provide experimental evidence that: (1) under conditions of ignorance, ambiguity averse

decision makers prefer betting on a greater balance of aleatory to epistemic uncertainty; (2)

this preference for an aleatory hedge increases as subjective knowledge decreases, and can

lead decision makers to choose stochastically dominated alternatives; and (3) an ambiguous

prospect can be made more or less attractive depending on whether uncertainty is framed as

more aleatory or epistemic in nature.

Our findings contradict prominent models of decision under uncertainty. However, the

present results can be accommodated by generic source models with rank-dependent utility

(such as prospect theory) that include probability weighting functions that vary by source of

uncertainty (i.e., “source functions”), as discussed in Section 2.2.6. Of course, a more complete

model would formalize the relationship between characteristics of sources of uncertainty and

corresponding source functions. The present findings suggest that the elevation of such

functions diminishes (i.e., pessimism increases) with the interaction of a decision maker’s

comparative ignorance and perceived balance of epistemicness to aleatoriness of the source.

We leave a formalization of this account to future research.

In his seminal paper, Ellsberg (1961) noted that “ambiguity is a subjective variable”

(p. 660). Likewise, experimental studies have shown that level of knowledge or competence

that drives source preferences is subjective and context-dependent (Fox and Tversky, 1995;

Fox and Weber, 2002; Hadar et al., 2013). For instance, Fox and Weber (2002) report that

betting on a moderately familiar event (e.g., the winner of an upcoming election in Russia) is

more attractive after decision makers are reminded of a less familiar event (e.g., the winner

of an upcoming election in the Dominican Republic) than after they are reminded of a more

familiar event (e.g., the winner of an upcoming election in the United States). Thus, a

decision maker’s subjective level of knowledge appears to be driven by a contrast with related

events that the decision maker has recently been contemplating. These results suggest that

decision makers’ confidence in betting under ambiguity is more closely tethered to their

subjective rather than objective level of knowledge (for more direct evidence see Hadar et al.,

2013).27 Furthermore, the last two studies in the current paper suggest that assessments of

27The interpretation that decision makers are especially wary of acting on their relative ignorance is also
consistent with neuroeconomic studies that compare brain activation when participants make betting
decisions under ambiguity versus risk, high versus low absolute knowledge, and high versus low knowledge
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epistemicness and aleatoriness of a source of uncertainty, like assessments of competence or

knowledge, are context-dependent and subject to framing effects. Whether a random event is

located in the future or past, or whether it is segregated as a chance lottery or integrated with

a knowable event, critically influences the attractiveness of betting on a source of uncertainty.

Another critical contextual factor is whether different sources of uncertainty are evaluated

in a comparative or noncomparative choice setting. Fox and Tversky (1995) find that

ambiguity aversion involving Ellsberg bets is pronounced when decision makers evaluate

both risky and ambiguous bets simultaneously, but diminishes or disappears when urns are

evaluated separately (so that there is no explicit contrast between urns to highlight one’s

comparative ignorance concerning the unknown probability urn). Likewise, it is worth noting

that all of the studies in the present paper entail choices involving contrasting sources of

uncertainty, for example, a choice between the EA-lottery and E-lottery in Studies 1 and 2.

We speculate that the attractiveness of the aleatory hedge provided by the EA-lottery may

be amplified by such contrasts and could be diminished when sources of uncertainty are

evaluated separately (as when lotteries involving purely epistemic versus mixed uncertainty

are priced separately), in a similar vein to Fox and Tversky (1995).

In this paper we have examined preferences for compound lotteries involving a simple

chance component and an ambiguous component. We have not examined preferences for

objective compound lotteries involving only chance components (e.g., Halevy, 2007). Interest-

ingly, Baars and Goedde-Menke (2021) find that probability weighting distortions are more

pronounced when subjects are less familiar with the games of chance underlying risky lotteries

— a phenomenon which they call the “ignorance illusion.” Relatedly, Armantier and Treich

(2016) provide evidence that probabilities are more distorted for objective lotteries with

higher complexity than for simpler lotteries, on par with distortions observed for ambiguous

lotteries. These results may explain instances of compound lottery aversion and its occasional

association with ambiguity aversion (e.g., Halevy, 2007; Aydogan et al., 2020), since the more

complex, two-stage design of compound (objective) lotteries may make them more difficult

to understand for some decision makers. This said, it is important to note that complexity

aversion cannot explain the preference for aleatory hedges in the present studies. Purely epis-

temic lotteries are no more complex to describe than mixed-uncertainty lotteries in the case

of the Ellsberg paradigm (Studies 1-2); betting on a favored team is no more complex than

betting on the outcome of a game (Study 3); and the compound, mixed-uncertainty lottery

that subjects favor is, in fact, more complex than the simple epistemic lottery (Study 4).

relative to another participant (Hsu et al., 2005). In particular, these authors find that level of (relative)
ignorance in choices correlates positively with activation in the amygdala (which is generally associated
with increased vigilance), and negatively with activation in the striatum (which is generally associated with
reward).
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The context-dependent character of both subjective knowledge and nature of uncertainty

that mutually drive ambiguity aversion poses a significant challenge to formal modeling.

This would require one to mathematically represent the state of mind of a decision maker —

which may be affected by fleeting ruminations and associations — at the moment when a

particular decision is made. Although such a formalization of epistemic uncertainty aversion

is beyond the scope of this paper, we have provided empirical evidence that prominent

models of ambiguity aversion are inadequate, noted generic source models as a promising

scaffolding on which to construct a viable model, and pointed to features of these functions

that track epistemic uncertainty aversion and more accurately capture the ambiguity aversion

phenomenon.
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